The Temperature Dependence of the Doolittle Equation Parameter for Polymer Liquids

MYUNG HO LEE, DO HUNG HAN, and BONGKEE CHO*
Department of Chemical Engineering, Yeungnam University, Gyongsan, Gyongbuk, Korea

Abstract

SYNOPSIS The Doolittle equation parameter for polymer liquids is a function of temperature. Its dependence on temperature can be expressed by a quadratic equation. The constants in the equation are determined for four vinyl-type polymer liquids: polystyrene (PS), poly (vinyl acetate) (PVAc), polydimethylsiloxane (PDMS), and polyisobutylene (PIB). It was found that the Doolittle parameter decreases with increasing temperature. Equations are presented for the pressure and temperature coefficients of viscosity, isoviscous temperature coefficient of volume, and the constant K_{m} in the Miller equation. Comparisons of the predictions of the equations, with those in the literature, are favorable. © 1993 John Wiley \& Sons, Inc.

INTRODUCTION

The most commonly used expression, relating viscosity to pressure, is the Doolittle equation ${ }^{1}$

$$
\begin{equation*}
\ln \eta=\ln A+B_{D} V_{00} /\left(V-V_{00}\right) \tag{1}
\end{equation*}
$$

where V is the specific volume of the liquid polymer at pressure P and temperature T, V_{00} is the occupied volume at zero Kelvin, and A and B_{D} are parameters. According to Dymond et al., ${ }^{2-4} B_{D}$ is temperature dependent.

Another equation, which is sometimes useful in correlating viscosity-pressure data, is the Vogel equation ${ }^{5}$

$$
\begin{equation*}
\ln \eta=\ln A^{\prime}+B_{V} /\left(T-T_{0}\right) \tag{2}
\end{equation*}
$$

where A^{\prime}, B_{V}, and T_{0} are parameters. Both B_{V} and T_{0} are dependent on pressure. Many years ago, Miller ${ }^{6,7}$ derived the pressure dependence of the parameters, T_{0} and B_{V}, for vinyl-type polymers.

In this article, we derive the temperature dependence of B_{D} for four polymers: PS, PVAc, PDMS, and PIB. The necessary PVT data are obtained us-

[^0]ing the equation of state, proposed by Cho, which takes the form ${ }^{8-10}$
\[

$$
\begin{equation*}
V=V_{0}[K /(K+P)]^{C} \tag{3}
\end{equation*}
$$

\]

where V_{0} is the zero-pressure volume at T and C is a constant, independent of P and T. The parameter K is independent of pressure and varies with temperature as:

$$
\begin{align*}
& K=k_{0} \exp \left(-k_{T}\right) \tag{4}\\
& k_{T}=k_{1} T+k_{2} T^{2} \tag{5}
\end{align*}
$$

where k_{0}, k_{1}, and k_{2} are constants for a given polymer liquid. The temperature dependence of V_{0} can be expressed by ${ }^{10}$

$$
\begin{equation*}
\ln V_{0}=a_{0}+a_{1} T+a_{2} T^{2} \tag{6}
\end{equation*}
$$

where a_{0}, a_{1}, and a_{2} are constants. The parameters in eqs. (3) and (6), for nine liquid polymers, were given in Ref. 10. Volumes, calculated with eqs. (3) and (6), agree with measured values within the accuracy of the measurements, typically $0.001 \mathrm{~cm}^{3} / \mathrm{g}$.

RESULTS AND DISCUSSION

Assuming that the temperature dependence of B_{D} is given by a quadratic equation

Table I Parameters in Eqs. (3) and (6) ${ }^{\text {a }}$

	PS	PVAc	PDMS	PIB
a_{0}	-2.12779×10^{-1}	-3.84716×10^{-1}	-2.25710×10^{-1}	-7.09048×10^{-2}
a_{1}	5.06870×10^{-4}	6.91153×10^{-4}	8.14263×10^{-4}	5.02334×10^{-4}
a_{2}	7.30724×10^{-9}	4.32452×10^{-8}	1.53499×10^{-7}	8.75706×10^{-8}
a_{3}	0	0	0	2.70508×10^{-12}
C	9.8700×10^{-2}	1.07865×10^{-1}	1.17605×10^{-1}	9.77632×10^{-2}
k_{0}	4.22110×10^{8}	1.16462×10^{4}	5.72070×10^{3}	6.22290×10^{3}
k_{1}	1.46813×10^{-3}	6.69306×10^{-3}	5.51024×10^{-3}	3.76464×10^{-3}
k_{2}	2.45360×10^{-6}	-3.82379×10^{-6}	5.46996×10^{-7}	5.43947×10^{-7}

* Volumes in $\mathrm{cm}^{3} / \mathrm{g}$, pressures in bars, temperatures in K.

$$
\begin{equation*}
B_{D}=b_{0}+b_{1} T+b_{2} T^{2} \tag{7}
\end{equation*}
$$

where b_{0}, b_{1}, and b_{2} are constants, then, from eqs. (1) and (2), we have

$$
\begin{align*}
\ln \left(\eta / \eta_{0}\right)= & B_{V}(P) /\left[T-T_{0}(P)\right] \\
& -B_{V}(0) /\left[T-T_{0}(0)\right] \tag{8}\\
= & \left(b_{0}+b_{1} T+b_{2} T^{2}\right) \\
\times & V_{00}\left[1 /\left(V-V_{00}\right)-1 /\left(V_{0}-V_{00}\right)\right] \tag{9}
\end{align*}
$$

where $\eta_{0}, B_{V}(0)$, and $T_{0}(0)$ are the values at P $=1$ bar. For four vinyl-type polymers, we fitted the Vogel term data to eq. (9) in order to determine the parameters in eq. (7). The Vogel term data were calculated using $B_{V}-P$ and $T_{0}-P$ data, reported by Miller. ${ }^{6,7}$ In calculating the Doolittle term, the necessary PVT data were calculated from eqs. (3) and (6), with the constants listed in Table I, and the values of V_{00} were calculated from eq. (6) with $T=0 K$. The temperature and pressure range of the data, used for PVT data reduction, were presented in Ref. 10. The results are presented in Table II. Throughout this work, units are $\mathrm{cm}^{3} / \mathrm{g}$, bars, and kelvin.

In Table III, the values of $\ln \left(\eta / \eta_{0}\right)$, calculated using eq. (9) for four vinyl-type polymers at various pressures, are compared with those calculated by eq. (8), with $B_{V}-P$ and $T_{0}-P$ data reported by Miller. ${ }^{6,7}$

Table II Parameters in Eq. (7)

	b_{0}	$-b_{1}$	b_{2}
PS	29.62905	9.61065×10^{-2}	8.12470×10^{-5}
PVAc	35.53602	0.12813	1.24471×10^{-4}
PDMS	2.25740	6.99554×10^{-3}	6.55027×10^{-6}
PIB	4.31827	1.46202×10^{-2}	1.56741×10^{-6}

From eqs. (3) and (6), the compressibility β $=(\partial \ln V / \partial P)_{T}$, and thermal expansivity $\alpha=(\partial \ln$ $V / \partial T)_{P}$, are expressed as

$$
\begin{equation*}
\beta=C /(K+P) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha=\alpha_{0}-\beta P\left(d k_{T} / d T\right) \tag{11}
\end{equation*}
$$

where α_{0} is the value of α at $P=1$ bar. The values of α_{0}, α, and β are calculated using eqs. (6), (11), and (10), with the constants listed in Table I.

Using eq. (1), we have

$$
\begin{equation*}
N_{P}=(\partial \ln \eta / \partial P)_{T}=B_{D} V V_{00} \beta /\left(V-V_{00}\right)^{2} \tag{12}
\end{equation*}
$$

and

$$
\begin{align*}
N_{T} & =(\partial \ln \eta / \partial T)_{P} \\
& =\frac{V_{00}}{\left(V-V_{00}\right)} \frac{d B_{D}}{d T}-B_{D} V V_{00} \alpha /\left(V-V_{00}\right)^{2} \tag{13}
\end{align*}
$$

These can be used to estimate the pressure and temperature coefficients of viscosity, N_{P} and N_{T}. From eq. (2), we have ${ }^{11}$

$$
\begin{equation*}
N_{T}=(\partial \ln \eta / \partial T)_{P}=-B_{D} /\left(T-T_{0}\right)^{2} \tag{14}
\end{equation*}
$$

which shows that the absolute value of N_{T} decreases with increasing temperature.

Penwell and Porter (P. $-P.)^{12,13}$ determined the pressure dependence of viscosity for polymers using the equivalent expression of the WLF equation, derived from free volume theory.

In Table IV, the calculated values of N_{P}, N_{T}, and $d V_{0} / d P$, for PDMS at 1 bar and $40^{\circ} \mathrm{C}$, are compared with those in the literature. The agreement is good. Using eq. (12), for PS at 1 bar and $190^{\circ} \mathrm{C}$, we find $-N_{T}=0.102 K^{-1}$, which is in good agreement with

Table III Calculated Values of $\ln \left(\eta / \eta_{0}\right)$ at Various Pressures ${ }^{\text {a }}$

P (bars)	PS $\left(180^{\circ} \mathrm{C}\right)$		PVAc ($110^{\circ} \mathrm{C}$)		PDMS ($40^{\circ} \mathrm{C}$)		$\operatorname{PIB}\left(10^{\circ} \mathrm{C}\right)$	
	Calc A	Calc B						
200	0.76856	0.76534	0.86619	0.85430	0.23340	0.23256	0.62294	0.66312
400	1.52814	1.53898	1.71678	1.71197	0.46486	0.46848	1.26822	1.32597
600	2.28470	2.30920	2.55693	2.56976	0.69731	0.70352	1.93954	1.99421
800	3.04285	3.09219	3.39069	3.42851	0.93295	0.93724	2.64068	2.65626
1000	3.80635	3.86856	4.22130	4.29176	1.17359	1.17527	3.37566	3.32943

a The temperatures for calculation are listed in parentheses. Calc A: calculated using eq. (9) with the constants listed in Table II; calc B: calculated using eq. (8) with the $B_{v}-\mathrm{P}$ and $T_{0}-P$ data reported by Miller. ${ }^{6,7}$
experimental value $0.103 \mathrm{~K}^{-1}$, found by Cogswell and McGowan. ${ }^{14}$

The calculated values of N_{P} at various temperatures, in Table V, for $P S^{13}$ of $T_{g}=89^{\circ} \mathrm{C}$ and PVAc ${ }^{15}$ of $T_{g}=31^{\circ} \mathrm{C}$, are compared with those in the literature. From the result of the comparison, one sees that the predicted values, using eq. (12), are in reasonable agreement with the experimental data. As pointed out by Goldblatt and Porter, ${ }^{13}$ at low temperatures, Miller's equation tends to predict values somewhat higher than those in the experiments.

According to Miller, ${ }^{11}$ the special combination of volume-temperature derivatives,

$$
\begin{align*}
K_{m} & =\left[(\partial V / \partial T)_{\eta}-(\partial V / \partial T)_{P}\right] \tag{15}\\
& =(\partial V / \partial P)_{T} /(\partial T / \partial P)_{\eta} \tag{16}
\end{align*}
$$

is independent of temperature at atmospheric pressure. This can be rewritten in the form

$$
\begin{equation*}
-K_{m}=N_{T}(\partial V / \partial P)_{T} / N_{P} \tag{17}
\end{equation*}
$$

Using eqs. (12) and (13), this becomes

$$
\begin{equation*}
K_{m}=\left(V-V_{00}\right)\left(d \ln B_{D} / d T\right)-(\partial V / \partial T)_{P} \tag{18}
\end{equation*}
$$

At atmospheric pressure, this becomes

$$
\begin{equation*}
K_{m}^{0}=\left(V_{0}-V_{00}\right)\left(d \ln B_{D} / d T\right)-\left(d V_{0} / d T\right) \tag{19}
\end{equation*}
$$

A comparison of eq. (18) with eq. (15) shows that

$$
\begin{equation*}
(\partial V / \partial T)_{\eta}=\left(V-V_{00}\right)\left(d \ln B_{D} / d T\right) \tag{20}
\end{equation*}
$$

For all polymer liquids studied, we found that $d B_{D} /$ $d T<0$. Thus, $(\partial V / \partial T)_{\eta}$ is negative.

Using eqs. (12) and (13), we have

$$
\begin{align*}
-(\partial T / \partial P)_{\eta}= & N_{P} / N_{T} \\
& =\left[\frac{V-V_{00}}{V \beta} \frac{d \ln B_{D}}{d T}-\alpha / \beta\right]^{-1} \tag{21}
\end{align*}
$$

For PS at 1 bar and $190^{\circ} \mathrm{C}$, we find $-N_{P} / N_{T}$ $=0.0349 \mathrm{deg} / \mathrm{bar}$, which is in excellent agreement with the literature value ${ }^{14}$ of $0.034 \mathrm{deg} / \mathrm{bar}$.

If it is assumed that B_{D} is independent of temperature, then from eq. (21), we obtain the wellknown expression ${ }^{17}$

$$
\begin{equation*}
N_{P} / N_{T} \simeq-\beta / \alpha \tag{22}
\end{equation*}
$$

Table IV Predictions of $N_{P}, N_{T}, d V_{0} / d T$, and K_{m}° for PDMS at 1 bar and $40^{\circ} \mathrm{C}$

	$10^{3} N_{P}\left(\mathrm{bar}^{-1}\right)$	$-10^{2} N_{T}\left(\mathrm{deg}^{-1}\right)$	$-10^{4} d V_{0} / d P$	$-10^{4} K_{m}^{o}$
PDMS $^{\mathrm{a}}$	1.295^{c}	1.798^{d}	1.291^{c}	17.9^{d}
PDMS $^{\mathrm{b}}$	0.73^{e}	1.8^{e}	1.813^{g}	1.218^{h}

[^1]Table V Predicted Pressure Coefficients for PS and PVAc at Various Temperatures $\boldsymbol{N}_{P} \times 10^{\mathbf{3}}$ (bars $^{-1}$)

$t^{\circ} \mathrm{C}$	PS				PVAc		
	P.-P. ${ }^{\text {a }}$	Miller ${ }^{\text {a }}$	This Work ${ }^{\text {e }}$	Experimental	$t^{\circ} \mathrm{C}$	Miller ${ }^{\text {b }}$	This Work ${ }^{\text {e }}$
150	4.698	6.597	5.069	$4.2{ }^{\text {a }}$	60	8.81	6.763
165			4.429	$4.3{ }^{\text {c }}$	80	6.27	5.676
170	3.267	5.071	4.235	$3.9{ }^{\text {a }}$	100	4.81	4.769
190	2.402	4.10	3.544	$3.9{ }^{\text {a }}$	120	3.88	4.019
				$3.5^{\text {d }}$			

${ }^{\text {a }}$ Reference 13.
${ }^{\mathrm{b}}$ Reference 15.
${ }^{\text {c }}$ K. H. Hellwege, W. Knappe, P. Paul, and V. Semjonow, Rheol. Acta, 6, 165 (1967).
${ }^{\text {d }}$ F. N. Cogswell and J. C. McGowan, Brit. Polym. J., 4, 183 (1972).
${ }^{\text {e }}$ Calculated from eq. (12).

Using the concept that the glass transition temperature, T_{g}, is an isoviscous or isomobility state, we have from eq. (20)

$$
\begin{align*}
(\partial V / \partial T)_{\eta} & =d V_{g} / d T \tag{23}\\
& =\left(V_{g}-V_{00}\right)\left(d \ln B_{D} / d T\right) \tag{24}
\end{align*}
$$

Using this information in eq. (15), the value of K_{m}° at T_{g} can be predicted. From the values of V_{0} and $d \ln B_{D} / d T$ for PVAc at $T_{g}=31^{\circ} \mathrm{C}$, we find $10.55 \mathrm{~cm}^{3} /(\mathrm{g} \mathrm{deg})$ for $-10^{4} d V_{g} / d T$ to be in good agreement with the experimental value of $10.8 \mathrm{~cm}^{3} /$ (g deg), obtained by Miller, ${ }^{11}$ using the PVT data of McKinney and Goldstein. ${ }^{16}$ From this and 10^{4} $d V_{0} / d T=7.1746 \mathrm{~cm}^{3} /(\mathrm{g} \mathrm{deg})$ at T_{g}, we find -10^{4} $K_{m}^{\circ}=17.72 \mathrm{~cm}^{3} /(\mathrm{g} \mathrm{deg})$. This value is close to that found by Miller, ${ }^{11}$ namely, $17.9 \mathrm{~cm}^{3} /(\mathrm{g} \mathrm{deg})$. Similarly, we find 11.138 and 4.9789 , respectively, leading to $-10^{4} K_{m}^{\circ}=16.12 \mathrm{~cm}^{3} /(\mathrm{g}$ deg $)$ for PS at T_{g} $=89^{\circ} \mathrm{C}$. This is also in good agreement with Miller's value ${ }^{11}$ for the same material, which is $16.9 \mathrm{~cm}^{3}$ / (g deg) .

For PS at 1 bar and $190^{\circ} \mathrm{C}$, we find from eq. (10) $10^{5} d V_{0} / d P=-7.9983 \mathrm{~cm}^{3} /(\mathrm{g}$ bar $)$. Using this and experimental values, ${ }^{14} N_{T}=-0.103 \mathrm{deg}^{-1}$ and 10^{3} $N_{P}=3.5 \mathrm{bar}^{-1}$, we find from eq. (17) $-10^{4} K_{m}^{\circ}$ $=23.538 \mathrm{~cm}^{3} /$ (g deg). From this result, one sees that K_{m}° increases with increasing temperature.

CONCLUSIONS

The Doolittle constant can be expressed by a quadratic equation in temperature, which decreases with increasing temperature. Based on this result, the following conclusions are reached: (a) The pressure
coefficient, N_{P}, decreases with increasing temperature, (b) the temperature coefficient, N_{T}, is negative and its absolute value decreases with increasing temperature, and (c) the constant K_{m}°, in Miller's equation, may change with temperature.

REFERENCES

1. A. K. Doolittle, J. Appl. Phys., 22, 1471 (1951).
2. J. H. Dymond and K. J. Young, Intl. J. Thermophys., 1, 331 (1980).
3. J. H. Dymond, K. J. Young, and J. D. Isdale, Intl. J. Thermophys., 1, 345 (1980).
4. J. H. Dymond, J. Robertson, and J. D. Isdale, Intl. J. Thermophys., 2, 183 (1981); 2, 223 (1981).
5. H. Vogel, Phys. Z., 22, 645 (1921).
6. A. A. Miller, Polymer, 20, 927 (1979).
7. A. A. Miller, Polymer, 20, 931 (1979).
8. B. Cho, Polym. Eng. Sci., 25, 1139 (1985).
9. B. Cho, J. Appl. Phys., 61, 4800 (1987).
10. B. Cho, J. Appl. Phys., 67, 1320 (1990).
11. A. A. Miller, Macromolecules, 11, 134 (1978).
12. R. C. Penwell and R. S. Porter, J. Polym. Sci. Part A-2, 9, 463 (1971).
13. P. H. Goldblatt and R. S. Porter, J. Appl. Polym. Sci., 20, 1199 (1976).
14. F. N. Cogswell and J. C. McGowan, Brit. Polymer J., 4, 183 (1972).
15. A. A. Miller, Polymer, 19, 899 (1978).
16. J. E. McKinney and M. Goldstein, J. Res. Natl. Bur. Stand. Ser. A, 78, 331 (1974).
17. D. W. Van Krevelen and P. J. Hoftyzer, Properties of Polymers, Elsevier, New York, 1980, p. 347.

Received December 19, 1992
Accepted April 5, 1993

[^0]: * To whom correspondence should be addressed.

 Journal of Applied Polymer Science, Vol. 50, 1803-1806 (1993) © 1993 John Wiley \& Sons, Inc. CCC 0021-8995/93/101803-04

[^1]: a $M=30,500$.
 ${ }^{\mathrm{b}} \boldsymbol{M}=47,200$.
 ${ }^{c}$ E. Kuss and M. Taslimi, Chem.-Ing.-Tech., 42, 1073 (1970).
 ${ }^{\mathrm{d}}$ Reference 11, Table I.
 ${ }^{\text {e }}$ W. Holzmüler and R. Dinter, Exp. Techn. Pysik, 8, 118 (1960).
 ${ }^{\mathrm{f}}$ Equation (12).
 ${ }^{8}$ Equation (13).
 ${ }^{\text {h }}$ Equation (10).
 ${ }^{i}$ Equation (17).

